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SOLUTION TO MIDTERM EXAMINATION II

Directions: Do all three problems, which have unequal weight. This is a closed-book closed-note
exam except for two 8 1

2 × 11 inch sheets containing any information you wish on both sides. Calcu-
lators are not needed, but you may use one if you wish. Use a bluebook. Do not use scratch paper
– otherwise you risk losing part credit. Cross out rather than erase any work that you wish the
grader to ignore. Justify what you do. Express your answer in terms of the quantities specified in
the problem. Box or circle your answer.

Problem 1. (35 points)
A nonrelativistic particle of mass m, moving in
one dimension x, is confined by infinite potential
walls at x = 0 and x = L. It is in the ground
state. (All of your answers to this problem
should depend at most on L, m, and fundamen-
tal constants.)
(a) (10 points)
Write down the particle’s normalized, time-
dependent ground-state wavefunction ψ1(x, t).
Solution:
This is an infinite-square-well problem. Tak-
ing V = 0 at the bottom of the well, the
eigenfunctions uE(x) of the time-independent
Schroedinger equation (TISE)

− h̄2

2m
∂2

∂x2
un(x) = Enun(x) ,

with boundary conditions un(0) = un(L) = 0,
are proportional to

un(x) ∝ sin
nπx

L
,

where n is an integer ≥ 1. Normalizing the
eigenfunctions

1 =
∫ L

0

u∗nun dx

requires the constant of proportionality to be
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2
L . From the TISE the eigenvalues
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.

Here the particle is in the ground state n = 1.
Since this is a state of definite energy, the solu-
tion to the time-dependent Schroedinger equa-
tion
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∂
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Full credit is received for simply writing down
this solution.
(b) (10 points)
The uncertainty ∆p in p, the particle’s momen-
tum, is defined by

∆p ≡
√
〈p2〉 − 〈p〉2 ,

where 〈 〉 denotes an expectation value. Using
either a cogent argument or a calculation, pro-
vide an order-of-magnitude estimate for ∆p.
Solution:
Continuing to take V = 0 at the bottom of the
well, the operator p2 is equal to 2mH, where H,
the Hamiltonian, is the operator on the left-hand
side of either Schoedinger equation. Here, since
the particle is in a state of definite energy E,
〈H〉 = E, and

〈p2〉 = 2mE

= 2m
h̄2

2m
π2

L2

= h̄2 π
2

L2
.



When it operates on u1, the operator p = h̄
i

∂
∂x

yields a single term proportional to cos πx
L , which

is odd about the center of the well. Since u∗1 is an
even function about the same point, the integral

〈p〉 =
∫ L

0

u∗1
h̄

i

∂

∂x
u1 dx

vanishes. Therefore 〈p〉 = 0 (this also may be
argued to be true by symmetry). Thus

∆p ≡
√
〈p2〉 − 〈p〉2 = h̄

π

L
.

This is an exact result. However the problem
requires only an order-of-magnitude estimate of
∆p. For this, one may alternatively use the
Heisenberg uncertainty principle

∆p∆x ≥ h̄
2 ,

where
∆x ≡

√
〈x2〉 − 〈x〉2 .

Estimating ∆x ≈ L
2 , one has

∆p ≥ (≈ h̄

L

)

≈ h̄

L
,

which has the same order of magnitude as the
exact result, and likewise receives full credit.
(c) (15 points)
The uncertainty ∆(p2) in p2, the square of the
particle’s momentum, is defined by

∆(p2) ≡
√
〈p4〉 − 〈p2〉2 .

Using either a cogent argument or a calculation,
provide an exact value for ∆(p2).
Solution:
The solution to part (b) found that u1 is an
eigenfunction of p2 with eigenvalue h̄2π2/L2.
Since the operator p4 is equivalent to the opera-
tor p2 operating twice, u1 is also an eigenfunction
of p4 with eigenvalue h̄4π4/L4. Therefore

∆(p2) ≡
√

〈p4〉 − 〈p2〉2 = 0 .

Problem 2. (30 points)
A particle of mass m that moves in a one-
dimensional harmonic oscillator potential

V (x) = 1
2mω

2
0x

2

has orthonormal bound states with exact ener-
gies, relative to the bottom of the well, equal to

En = h̄ω0(n+ 1
2 ) ,

where n is an integer ≥ 0. This particle in-
teracts not only with the potential walls, but
also with a thermal bath at temperature T , with
which it is free to exchange energy and with
which it is in thermal equilibrium. Because of
the bath, the particle’s probability of occupying
state n is proportional to the Boltzmann fac-
tor exp (−En/kBT ), where kB is Boltzmann’s
constant.

Calculate the particle’s energy expectation value
〈E〉 as a function of ω0, T , and fundamental
constants. [Hint: As T → 0 and T → ∞, your
result should approach simple and sensible lim-
iting values.]
Solution:
In general the particle’s wavefunction u can be
expressed as a linear combination (with coeffi-
cients an) of the energy eigenfunctions un, which
form a basis set:

u =
∞∑

n=0

anun .

Therefore the probability Pn of occupying state
n is

Pn =
∫ ∞

−∞
a∗nu

∗
n anun dx

= a∗nan ,

using the normality of the un. According to the
problem, Pn has a Boltzmann energy dependence

Pn ∝ exp (−En/kBT ) ,

where
En = h̄ω0(n+ 1

2 ) .

Therefore, substituting β ≡ (1/kBT ),

a∗nan = C exp (−nβh̄ω0) ,



where C is a constant of proportionality. Using
the orthonormality of the un, C is determined
by the requirement

1 = 〈u∗u〉

=
∞∑

m,n=0

∫ ∞

−∞
a∗mu

∗
m anun dx

=
∞∑

n=0

a∗n an

= C
∞∑
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exp (−nβh̄ω0)

=
C

1− exp (−βh̄ω0)
C = 1− exp (−βh̄ω0) .

The energy expectation value is

〈E〉 =
∫ ∞

−∞
u∗Hu dx ,

where Hun = Enun. Again using the orthonor-
mality of the un,

〈E − 1
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∗
m nh̄ω0 anun dx

=
∞∑
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a∗n nh̄ω0 an
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n=0

nh̄ω0 exp (−nβh̄ω0)

=
(
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=
(
1− exp (−βh̄ω0)

)−∂
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1
1− exp (−βh̄ω0)

=
(
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) h̄ω0 exp (−βh̄ω0)(
1− exp (−βh̄ω0)
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=
h̄ω0 exp (−βh̄ω0)
1− exp (−βh̄ω0)

=
h̄ω0

exp (βh̄ω0)− 1 .

Therefore 〈E〉 reduces to 1
2 h̄ω0 when T → 0

(β → ∞) and, Taylor expanding the denomina-
tor, to 1

β = kBT when T → ∞. (Full credit was

given to an otherwise correct result that did not
sum the geometric series.)

Problem 3. (35 points)
A mostly uniform transparent plate of refrac-
tive index n = 2, normally illuminated by a
plane wave of vacuum wavelength λ0, occupies
a thin region whose downstream edge is mostly
the plane z = 0. However, the plate has a
small protrusion described by the the cylinder
(0 < z < λ0/4, x2 + y2 < R2). In other words,
within a radius R from the z axis, the plate
is thicker than elsewhere by λ0/4, where λ0 is
the vacuum wavelength. An observer is located
on the z axis downstream of the protrusion, at
z � R. You may not assume that Fraunhofer
conditions apply. Your answers to both parts
must be justified!

a. (15 points) Walking from very large z toward
the plate, the observer sees the irradiance rise to
a local maximum at z = z1. What is z1?
Solution:
As the observer (with diminishing coordinate z)
walks toward the plate, the Fresnel zone outer
radii Rm =

√
mλ0z become smaller. Eventually

the first Fresnel zone outer radius R1 will become
as small as the radius R of the protrusion.

The salient characteristic of Fresnel zones is that
their contributions Um to the observed optical
disturbance alternate in sign. Also, the sum

U≥2 ≡
∞∑

m=2

Um

is opposite in sign to U1. Their partial cancella-
tion causes the observed optical disturbance

Uobs ≡
∞∑

m=1

Um

to be not as large as the single contribution U1

from the first zone.

When R1 = R, 100% of the first Fresnel zone will
have a shift in phase, relative to the other zones,
caused by the increased thickness of the pro-
trusion. This phase shift will upset the partial



cancellation, producing a larger Uobs. Therefore
the first maximum will occur at z1 such that

√
λ0z1 = R

z1 =
R2

λ0
.

b. (20 points) At z = z1, what is the ratio of the
observed irradiance to the irradiance that would
be observed if the plate had no protrusion?
Solution:
The protrusion causes the plate to be thicker by
∆z ≡ λ0/4 within its area. Inside the plate, the
wavelength λ is equal to λ0/n, where n = 2 is
its refractive index. Therefore, upon exiting the
protrusion, the optical disturbance develops an
additional phase shift

∆φprotrusion = k∆z

=
2π
λ0/n

λ0/4

= π

relative to light entering the protrusion. At the
same z, light that doesn’t pass through the pro-
trusion will develop an additional phase shift in
vacuum:

∆φoutside protrusion = k0∆z

=
2π
λ0
λ0/4

= π/2 .

Therefore, when the protrusion radius is equal
to that of the first Fresnel zone, U1 will be
π − π/2 = π/2 out of phase with U≥2. This
means that the two will add incoherently. Thus

Iobs = I1 + I≥2

= 4Ino + Ino

= 5Ino ,

where the subscript no refers to the total that
would be observed if the protrusion did not ex-
ist. Here we have used the standard Fresnel-zone
facts that |U1| = 2|Uno| and |U≥2| = |Uno|.


